Popular Posts

Popular Posts

Pages

Total Pageviews

Saturday, October 29, 2011

All about Graphite and Diamonds



Diamond and Graphite

Graphite and diamond are two of the most interesting minerals. They are identical chemically—both are composed of carbon (C), but physically, they are very different. Minerals which have the same chemistry but different crystal structures are called polymorphs.
When you look at graphite and diamond, it is hard to imagine that they are identical chemically, for they are so different physically. Graphite is opaque and metallic- to earthy-looking, while diamonds are transparent and brilliant. (See examples on display.)
Another important physical difference is their hardness. The hardness of minerals is compared using the Mohs Hardness Scale, a relative scale numbered 1 (softest) to 10 (hardest). Graphite is very soft and has a hardness of 1 to 2 on this scale. Diamonds are the hardest known natural substance and have a hardness of 10. No other naturally occurring substance has a hardness of 10. The crystal structure of graphite yields physical properties that permit the use of graphite as a lubricant and as pencil lead. The gem and industrial properties of diamond, physical properties that we cherish and exploit, are also a result of diamond's crystal structure.
The reason for the differences in hardness and other physical properties can be explained with the molecular models below. In graphite, the individual carbon atoms link up to form sheets of carbon atoms. Each sheet of carbon atoms is translated (offset) by one-half of a unit such that alternate sheets are in the same position. Within each sheet every carbon atom is bonded to three adjacent carbon atoms that lie at the apices of equilateral triangles. This produces hexagonal rings of carbon atoms. Each carbon atom has four valence electrons available to participate in the formation of chemical bonds. Three of these electrons are used in forming strong covalent bonds with the adjacent atoms in the sheet. Covalent bonds are a type of chemical bond in which electrons are shared between atoms. The fourth electron is free to wander over the surface of the sheet making graphite an electrical conductor. The spacing between the sheets of carbon atoms is greater than the diameter of the individual atoms. Weak bonding forces called van der Waals forces hold the sheets together. Because these forces are weak, the sheets can easily slide past each other. The sliding of these sheets gives graphite its softness for writing and its lubricating properties.
In diamonds, each carbon atom is strongly bonded to four adjacent carbon atoms located at the apices of a tetrahedron (a three-sided pyramid). The four valence electrons of each carbon atom participate in the formation of very strong covalent bonds. These bonds have the same strength in all directions. This gives diamonds their great hardness. Since there are no free electrons to wander through the structure, diamonds are excellent insulators. The brilliance and "fire" of cut diamonds is due to a very high index of refraction (2.42) and the strong dispersion of light; properties which are related to the structure of diamonds.
Mineral NameGraphiteDiamond
Models
(Click images to enlarge)
Graphite Model

Diamond Model
Crystal SystemHexagonalIsometric
Crystal ClassGraphite crystal classDiamond crystal class
Space GroupC63/mmcFd3m
NameFrom the Greek graphos, to writeCorruption of the Greek word adamas, the invincible

HISTORY OF DIAMONDS


From myths about valleys of diamonds protected by snakes, to the production of millions of carats in rough diamonds each year, the history of diamonds is one of mystical power, beauty and commercial expertise.
Early History
The first recorded history of the diamond dates back some 3,000 years to India, where it is likely that diamonds were first valued for their ability to refract light. In those days, the diamond was used in two ways-for decorative purposes, and as a talisman to ward off evil or provide protection in battle. 
The Dark Ages
The diamond was also used for some time as medical aid. One anecdote, written during the Dark Ages by St Hildegarde, relates how a diamond held in the hand while making a sign of the cross would heal wounds and cure illnesses. Diamonds were also ingested in the hope of curing sickness. During the early Middle Ages, Pope Clement unsuccessfully used this treatment in a bid to aid his recovery.

back to top

The Middle Ages
During the Middle Ages more attention was paid to the worth of diamonds, rather than the mystical powers surrounding them. Due to the heightened public awareness of the value of diamonds, mine owners perpetuated myths that diamonds were poisonous. This was to prevent the mineworkers swallowing the diamonds in an attempt to smuggle them out of the mines.

The popularity of diamonds surged during the Middle Ages, with the discovery of many large and famous stones in India, such as the Koh-I-Noor and the Blue Hope. Today India maintains the foremost diamond polishing industry in the world.
As the Indian diamond supply dwindled, smaller finds occurred in Borneo and Brazil, but these were not sufficient to meet the ever-increasing demand for diamonds. The mid-nineteenth century discovery of diamonds near the Orange River in South Africa sparked the world's biggest diamond rush, and helped to satiate the world's increasing appetite for diamonds.
back to top
Recent Times
During the mid-nineteenth century, diamonds were also being discovered in eastern Australia. However, it was not until late 1970's, after seven years of earnest searching, that Australia's alleged potential as a diamond producer was validated. 
On October 2nd 1979, geologists found the Argyle pipe near Lake Argyle: the richest diamond deposit in the world. Since then, Argyle has become the world's largest volume producer of diamonds, and alone is responsible for producing over a third of the world's diamonds every year.
back to top